CYCLE FABRICATIONS ELECTRONIQUES

INTEGRER L'ELECTRONIQUE DE PUISSANCE « MODERNE » DANS LES SYSTEMES

Session organisée par le pôle de compétitité

Les 14, 15 et 16 octobre 2024 STMicroelectronics, Tours

FRAMATECH S.A. au capital de 38112 Euros Etudes & mises en œuvre de stratégies industrielles internationales Hautes Technologies

4 boulevard d'Arras - 13004 Marseille - France Tél. +33 491 95 55 70 / Fax. +33 491 95 55 75 / Mail : contact@framatech.fr Organisme de formation n° 93060115506 – Siret 344 351 879 00046 – NAF 742C – RC88B126 Web : www.framatech.fr

CYCLE FABRICATIONS ELECTRONIQUES

INTEGRER L'ELECTRONIQUE DE PUISSANCE « MODERNE » DANS LES SYSTEMES

NOTE POUR LE LECTEUR QUI N'AURAIT PAS ASSISTE AU SEMINAIRE

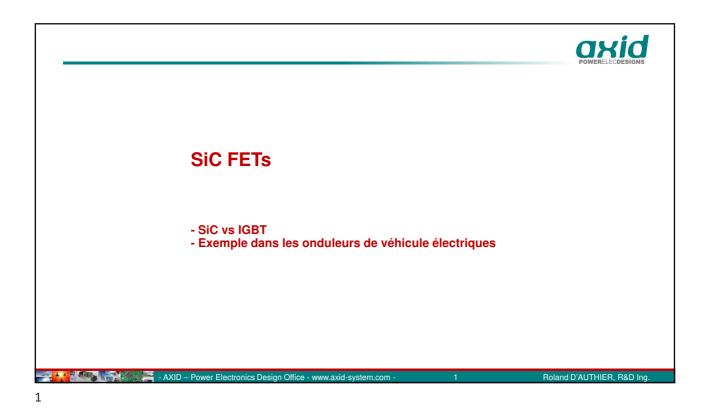
La documentation ci-jointe est celle qui a servi de support pour illustrer les exposés faits pendant le séminaire INTEGRER L'ELECTRONIQUE DE PUISSANCE « MODERNE » DANS LES SYSTEMES et ne représente donc qu'une partie des informations données à cette occasion.

FRAMATECH S.A. au capital de 38112 Euros Etudes & mises en œuvre de stratégies industrielles internationales Hautes Technologies

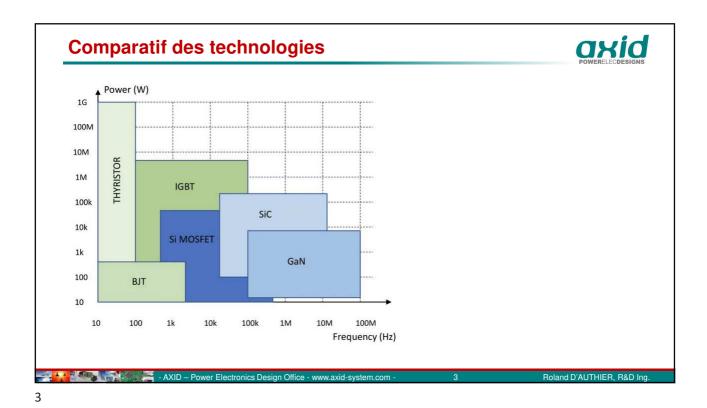
4 boulevard d'Arras - 13004 Marseille - France
Tél. +33 491 95 55 70 / Fax. +33 491 95 55 75 / Mail : contact@framatech.fr
Organisme de formation n° 93060115506 – Siret 344 351 879 00046 – NAF 742C – RC88B126
Web : www.framatech.fr

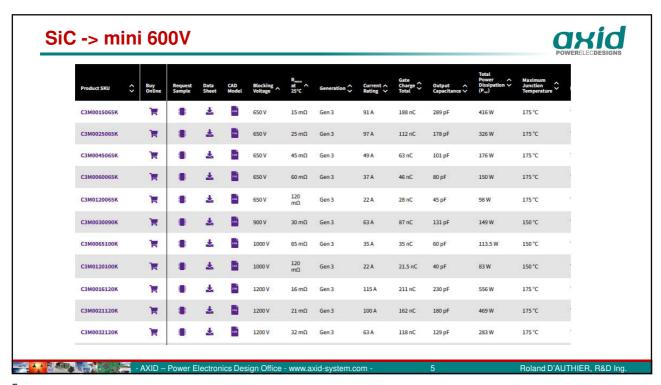
CYCLE FABRICATIONS ELECTRONIQUES

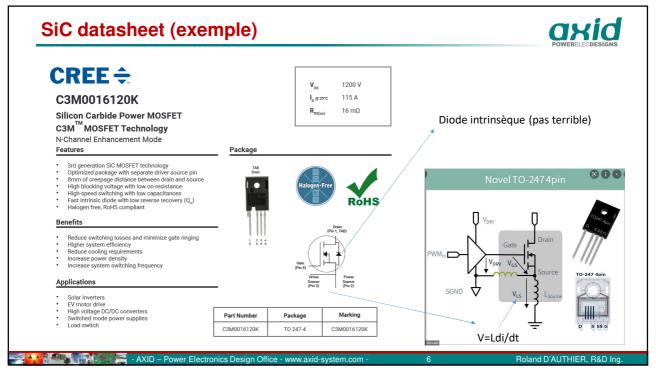
INTEGRER L'ELECTRONIQUE DE PUISSANCE « MODERNE » DANS LES SYSTEMES


PARTIE IV

INTEGRATION DE L'ELECTRONIQUE DE PUISSANCE DANS LES SYSTEMES

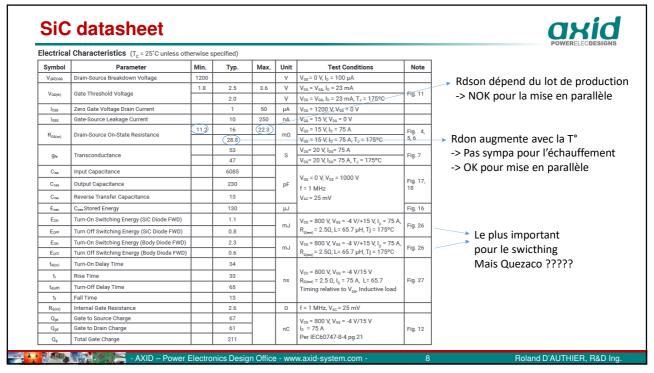

Roland D'AUTHIER, AXID


FRAMATECH S.A. au capital de 38112 Euros Etudes & mises en œuvre de stratégies industrielles internationales Hautes Technologies


4 boulevard d'Arras - 13004 Marseille - France
Tél. +33 491 95 55 70 / Fax. +33 491 95 55 75 / Mail : contact@framatech.fr
Organisme de formation n° 93060115506 – Siret 344 351 879 00046 – NAF 742C – RC88B126
Web : www.framatech.fr

SiC datasheet

Si on dépasse les max -> on casse

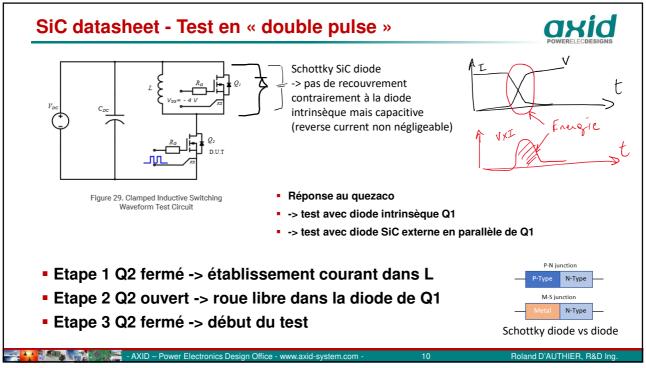

Maximum Ratings ($T_c = 25$ $^{\circ}$ C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note	
V _{DSmax}	Drain - Source Voltage	1200	٧	V _{GS} = 0 V, I _D = 100 μA		
V _{GSmax}	Gate - Source Voltage (dynamic)	-8/+19	٧	AC (f >1 Hz)	Note 1	
V_{GSop}	Gate - Source Voltage (static)	-4/+15	٧	Static	Note 2	
Ip	Continuous Drain Current	115	A	V _{GS} = 15 V, T _C = 25°C	Fig. 19	
ID	Continuous Drain Current			V _{GS} = 15 V, T _C = 100°C		
I _{D(pulse)}	Pulsed Drain Current	250	Α	Pulse width t _p limited by T _{jmax}		
P_{D}	Power Dissipation	556	W	T _C =25°C, T _J = 175 °C	Fig. 20	
T_J , T_{atg}	Operating Junction and Storage Temperature	-40 to +175	°C			
T_L	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s		

Note (1): When using MOSFET Body Diode V_{GSmax} = -4V/+19V Note (2): MOSFET can also safely operate at 0/+15 V

XID - Power Electronics Design Office - www.axid-system.com -

Roland D'AUTHIER, R&D


SiC datasheet -> diode intrinsèque pas si bonne que ça

Reverse Diode Characteristics (T_c = 25°C unless otherwise specified)

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note	
V_{SD}	V _{SD} Diode Forward Voltage			٧	V _{GS} = -4 V, I _{SD} = 37.5 A, T _J = 25 °C	Fig. 8,	
V SD	Diode Polward Voltage	4.2		٧	V _{GS} = -4 V, I _{SD} = 37.5 A, T _J = 175 °C	9, 10	
Is	Continuous Diode Forward Current		112	Α	V _{GS} = -4 V, T _C = 25°C	Note 1	
I _{S, pulse}	Diode pulse Current		250	Α	V_{GS} = -4 V, pulse width t_P limited by T_{Jmax}	Note 1	
t _{rr}	Reverse Recover time	30		ns			
Q_{rr}	Reverse Recovery Charge	1238		nC	V _{GS} = -4 V, I _{SD} = 75 A, V _R = 800 V dif/dt = 4000 A/µs, T, = 175 °C	Note 1	
I _{rrm}	Peak Reverse Recovery Current	64		А			
t _{rr}	Reverse Recover time	27		ns			
Q _{rr}	Reverse Recovery Charge	1261		nC	V _{GS} = -4 V, I _{SD} = 75 A, V _R = 800 V dif/dt = 5500 A/µs, T _J = 175 °C	Note 1	
I _{rrm}	Peak Reverse Recovery Current	77		Α]		

9

SiC datasheet - Switching energy

- La fréquence est limitée par l'énergie de switching
- Exemple d'énergie dissipée dans le transistor à 75A/800V
 - Environ 3mJ à chaque fermeture + ouverture
 - Si switching à $100kHz -> P=E^*f = 0,003^*100\,000 = 300W$ à dissiper

Eon	Turn-On Switching Energy (SiC Diode FWD)	1.1	mJ	V _{DS} = 800 V, V _{GS} = -4 V/+15 V, I _D = 75 A,	Fig. 26
E _{OFF}	Turn Off Switching Energy (SiC Diode FWD)	0.8	1110	$R_{G(ext)} = 2.5\Omega$, L= 65.7 μ H, Tj = 175°C	1 ig. 20
Eon	Turn-On Switching Energy (Body Diode FWD)	2.3		V _{DS} = 800 V, V _{GS} = -4 V/+15 V, I _D = 75 A,	Fig. 26
Eoff	Turn Off Switching Energy (Body Diode FWD)	0.6	mJ	R _{G(ext)} = 2.5Ω, L= 65.7 μH, Tj = 175°C	Fig. 20

Rappel : un excellent dissipateur bien ventilé -> environ 0,5°K/W

La jonction ne doit pas dépasser 175°C, Dans « la vraie vie » ont est pas à 75A en permanence

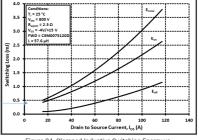
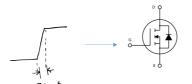


Figure 24. Clamped Inductive Switching Energy vs. Drain Current ($V_{DD} = 800V$)

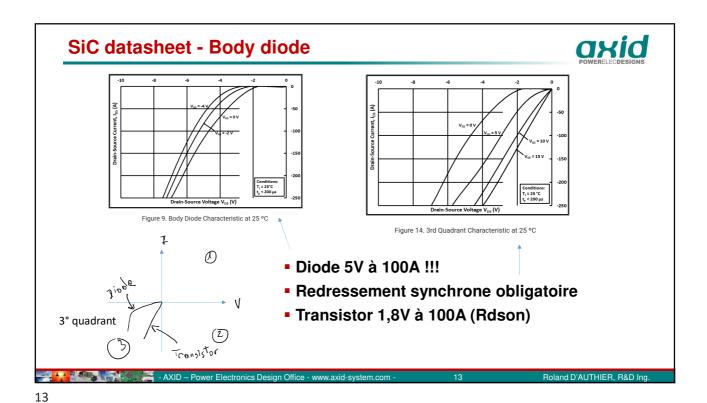
XID – Power Electronics Design Office - www.axid-system.com -

11

Roland D'AUTHIER, R&D Inc


11

SiC datasheet - Courant de driver


• 211nC à chaque ouverture + fermeture

Q _{gs}	Gate to Source Charge	67		V _{DS} = 800 V, V _{GS} = -4 V/15 V	
Q_{gd}	Gate to Drain Charge	61	nC	I _D = 75 A	Fig. 12
Qg	Total Gate Charge	211		Per IEC60747-8-4 pg 21	

12

Poland D'ALITHIED, D&D Ind

axid **IGBT** datasheet IKY50N120CH3 (infineon Fast silicon diode High speed switching series third generation IGBT ajoutée Low switching losses IGBT in Highspeed3 technology copacked with soft, fast recovery full current rated anti-parallel Emitter Controlled diode Rappel : le transistor IGBT ne conduit pas dans le High speed H3 technology offers:

• Ultra-low loss switching losses thanks to Kelvin emitter pin package in combination with High speed H3 technology.

• High efficiency in hard switching and resonant topologies
• 10 uses short circuit withstand time at T_{v=}175°C
- Easy paralleling capability due to positive temperature coefficient in V_{CE(set)} 3° quadran Coefficient in Ve_{Eleaty} capability due to positive temperature coefficient in Ve_{Eleaty} Low Gate Charge Q_o
- Very soft, fast recovery full current anti-parallel diode
- Maximum junction temperature 175°C
- Pb-free lead plating, RoHS compliant
- Complete product spectrum and PSpice Models:
http://www.infineon.com/igbt/ Applications: Industrial UPS Charger
 Energy Storage
 Three-level Solar String Inverter

IGBT datasheet – Energie de switching

- 50A (75A pour le SiC) -> presque 2 fois plus d'énergie
- -> 2 fois moins haut en fréquence

Switching Characteristic, Inductive Load

Dt	Symbol Conditions -			11		
Parameter			min.	typ.	max.	Unit
IGBT Characteristic, at <i>T</i> _{vj} = 25°C						
Turn-on delay time	$t_{\sf d(on)}$	T _{vi} = 25°C,	-	32	-	ns
Rise time	t _r	$V_{cc} = 600V, I_{c} = 50.0A,$	-	28	-	ns
Turn-off delay time	$t_{ m d(off)}$	$V_{GE} = 0.0/15.0V$, $R_{G(on)} = 10.0\Omega$, $R_{G(off)} = 10.0\Omega$,	-	296	-	ns
Fall time	t _f	$L\sigma = 90$ nH, $C\sigma = 67$ pF	-	29	-	ns
Turn-on energy	E _{on}	Lσ, Cσ from Fig. E Energy losses include "tail" and	-	2.30	-	mJ
Turn-off energy	E _{off}	diode reverse recovery.	-	1.90	-	mJ
Total switching energy	E _{ts}		-	4.20	-	mJ

XID - Power Electronics Design Office - www.axid-system.com -

15

Roland D'AUTHIER, R&D Inc

15

SiC vs IGBT

- En 2022 :
- IGBT IKY50N120CH3 -> environ 6€
- SiC C3M0016120K -> environ 50€
- -> l'IGBT a toujours son marché en 2022 !!

7000 1 0001 Elocitorinos Besign Cinico WWW.axia System.com

16

Roland D'AUTHIER, R&D Ing

Exemple dans les onduleurs de véhicule électriques

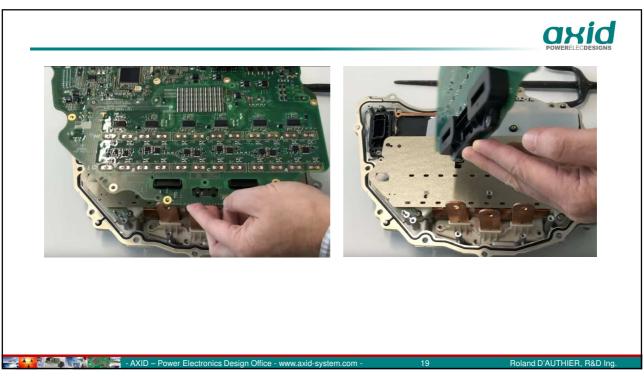
- AXID – Power Electronics Design Office - www.axid-system.com -

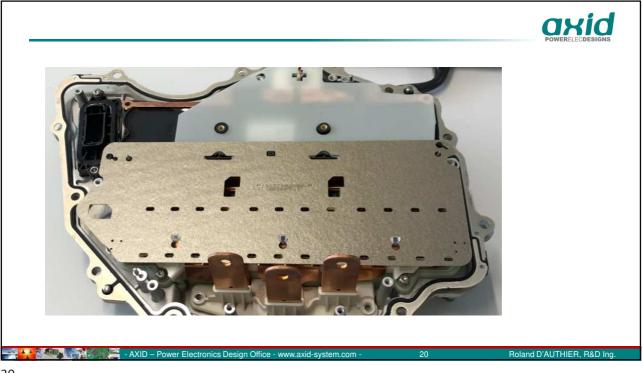
17

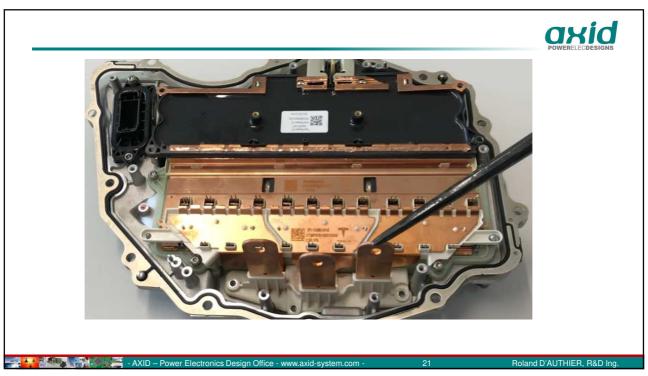
Poland D'ALITHIED D&D Inc

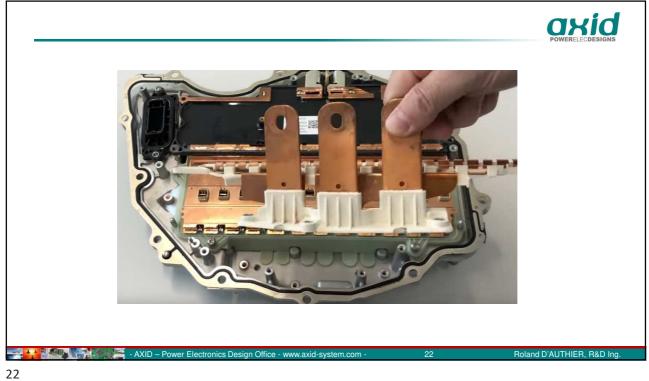
17

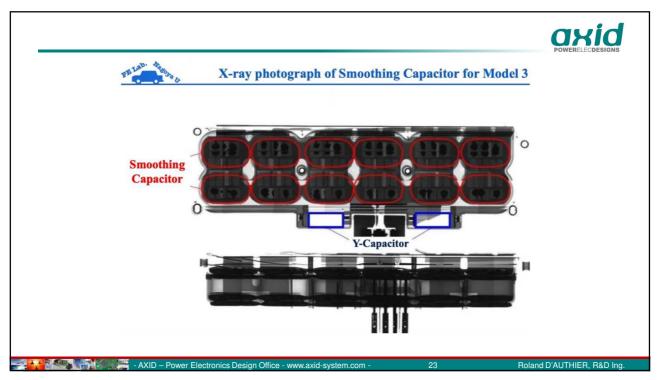
TESLA MODEL 3 – Onduleur traction

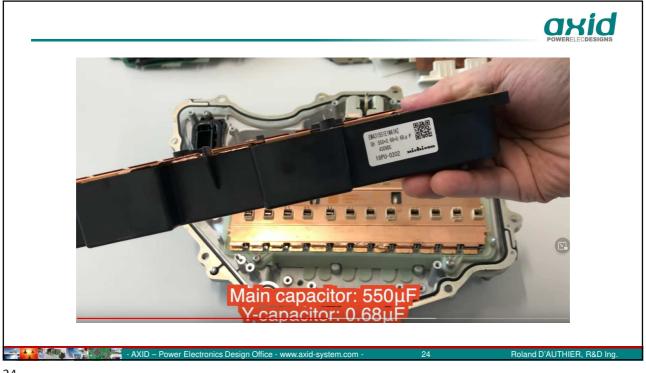


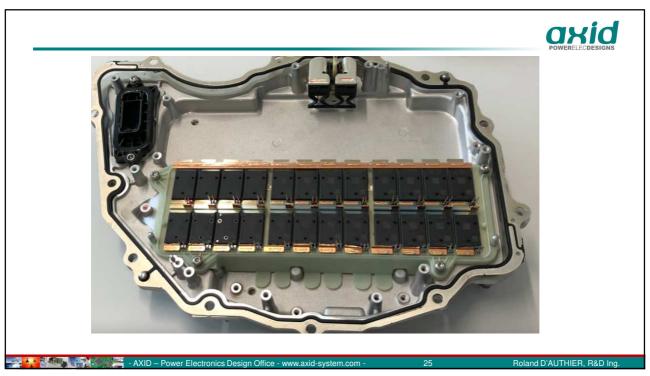

https://www.youtube.com/watch?v=fj4KBVgJsGA

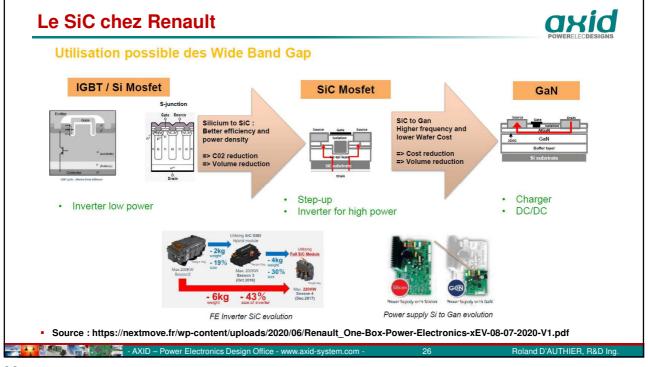

AVID Power Flectronics Design Office, www.avid.system.com

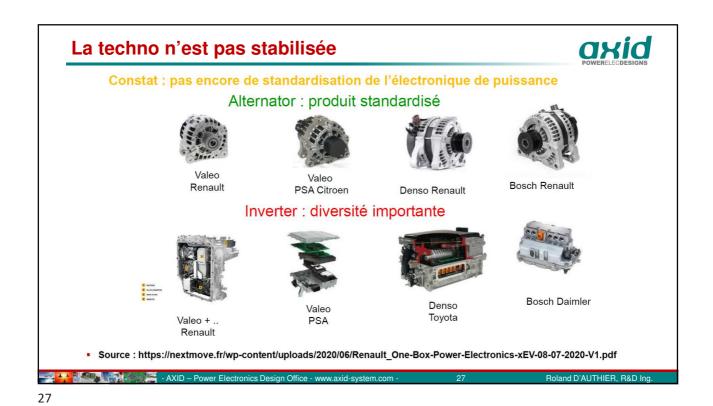

18

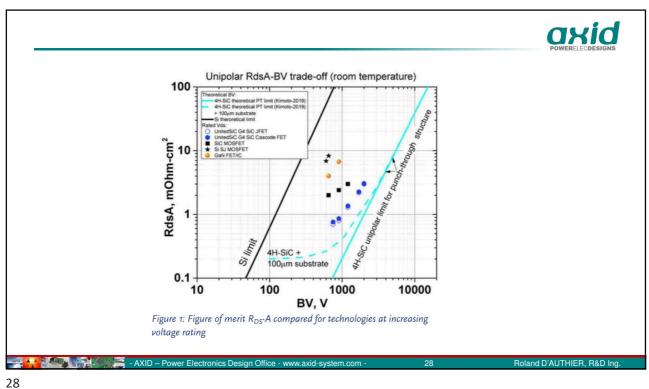

oland D'AUTHIER, R&D Ing.











IGBT vs Jfet SiC

- Un IGBT à 8kHz a autant de perte de switching que de conduction...
- 2% (IGBT) de perte à comparer à 0,64% (SiC)-> c'est 3 fois mieux

Voltage Class	Device	Bus Voltage	Frequency (kHz)	Loss (W)		Po	ower Outp	ut		
Class		voltage	(KHZ)		50 kW	100 kW	150 kW	200 kW	250 kW	
				Conduction	341	782	1322	1962		
750	IGBT+Diode	500	8	Switching	616	1064	1539	2042		
/50	750 IGB1+Diode	300	500	°	Total	957	1846	2861	4004	
				Semiconductor Efficiency	98.09%	98.15%	98.09%	98.00%		
				Conduction	62	255	600	1147	2016	
750	UJ4SC075006K4S	500	8	Switching	82	102	121	139	157	
/50	x 6	x 6	0	Total	144	357	721	1286	2173	
				Semiconductor Efficiency	99.71%	99.64%	99.52%	99.36%	99.13%	

Table 1: UnitedSiC FETs yield much lower losses than IGBTs in a traction inverter

XID - Power Electronics Design Office - www.axid-system.com -

29

Roland D'AUTHIER, R&D Ind

29

MOSFET vs Jfet SiC

• 2 fois moins de surface à perte égale

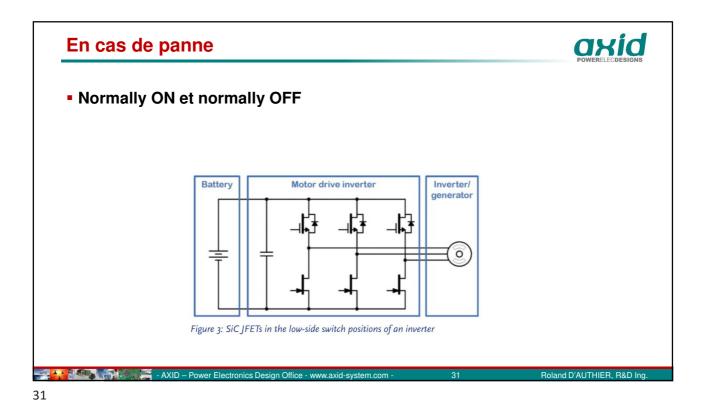

Voltage Class	Devices used	No of paralleled FETs	Bus Voltage (V)	Freq(kHz)	Total Chip area all phases(mm2)	Total Semi Loss(W)	TJ (Celsius)
750		7	350	8	462	3579	159
750	G4 SICFET 11m, 750V	9	350	8	594	2287	122
750		11	350	8	726	1753	108
650		7	350	8	760.2	2857.5	154
650	G3 SiCMOS 15m, 650V	9	350	8	977.4	2129.3	125
650		11	350	8	1194.6	1720.6	112
650	G2 SiC MOS 20m, 650V	8	350	8	1032	4007.2	164
650		10	350	8	1290	2825.8	130
650		12	350	8	1548	2254.7	115

Table 2: UnitedSiC FETs compared with SiC MOSFETs

- AXID – Power Electronics Design Office - www.axid-system.com

30

Roland D'AUTHIER, R&D Ing.

• Les questions sont les bienvenues

• AXID - Power Electronics Design Office - www.axid-system.com - 32 Roland D'AUTHIER, R&D Ing.

PARTIE IV – INTEGRATION DANS LES SYSTEMES

LLC - Formation Electronique de Puissance

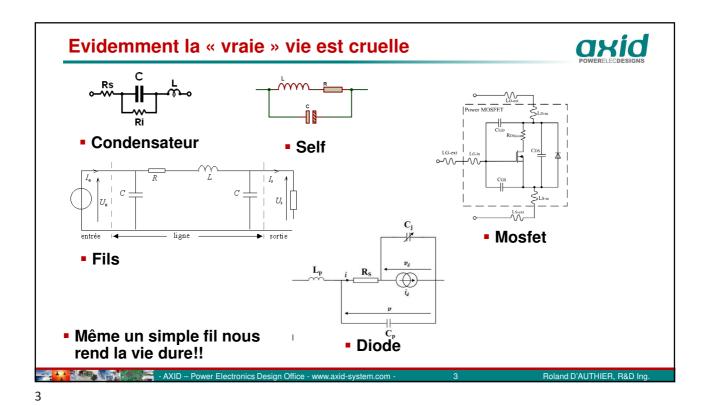
Convertisseur isolé « à la mode » multi-résonant à haut rendement

Roland d'Authier - Axid

- AXID – Power Electronics Design Office - www.axid-system.com

Roland D'AUTHIER, R&D Inc

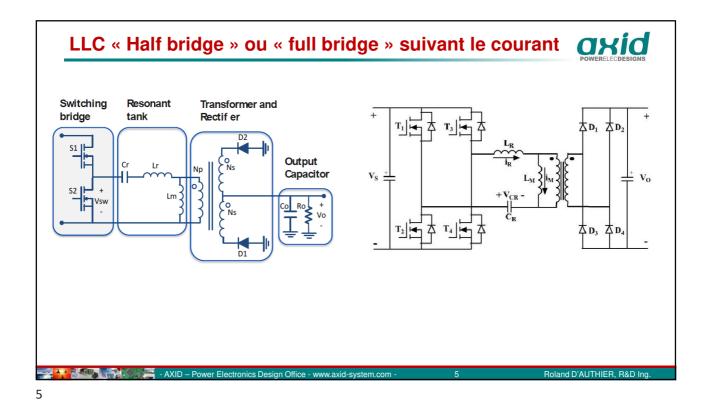
1


Les composants électroniques « sans perte »

- Les condensateurs parfaits
- Les selfs parfaites
- Les fils 0 Ohm
- Les circuits ouverts
- Des diodes parfaites
- Des transistors parfaits (bloqué ou fermé)
- Avec ces composants on peut tout imaginer et rester à 100% de rendement!!
- Rappel : 96% de rendement, c'est 2 fois plus de pertes qu'un rendement 98%

- AXID – Power Electronics Design Office - www.axid-system.com -

Roland D'AUTHIER, R&D Ing.


Le challenge : passer à côté des défauts ou s'en servir

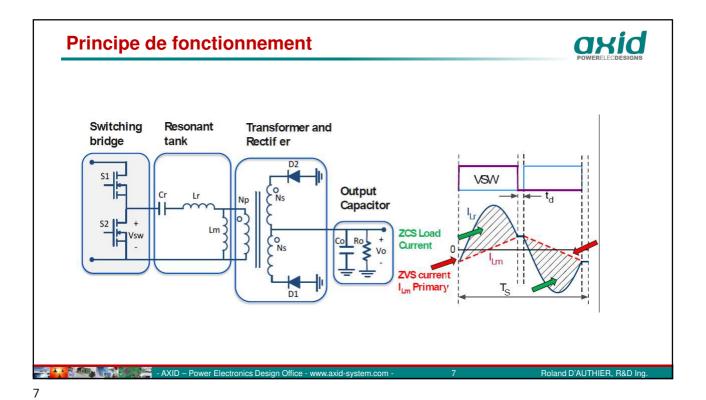
- Dans un convertisseur résonant type LLC on va :
 - Utiliser les selfs de fuites des transformateurs et des fils
 - Utiliser les condensateurs parasites des transistors
 - Annuler (si possible) le courant naturellement avec d'ouvrir un transistor(ZCS)
 - Annuler (si possible) la tension naturellement avant de fermer un transistor (ZVS)
 - « Démarrer » et « éteindre » doucement les diodes (ZCS)
 - ...
- Objectif = passer à côté des pertes de « switching » et monter en fréquence

AVID Power Flectronics Decign Office, MANN avid system com-

Roland D'AUTHIER, R&D Ing.

Exemple de design: demoboard Infineon 600W

Ceci est uniquement un exemple
« no endorsement »

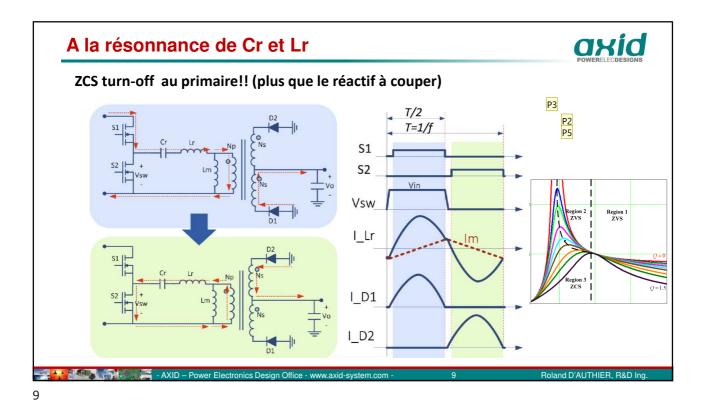

EXEMPLE DESIGN:

CECI EST UNIQUEMENT UN EXEMPLE (* no endorsement)

EXEMPLE DESIGN:

EXEMPLE DESI

(c) Roland D'AUTHIER, AXID, FRAMATECH


Ce convertisseur se pilote en fréquence

- Ce n'est pas une approche « naturelle »
- Le gain dépend de la charge
- D'habitude pour régler le gain d'un convertisseur on travaille en PWM
- Cette approche nous challenge
 - En math
 - En physique
 - En algorithmie
 - En modélisation (fréquentielle + temporelle)
 - En contrôle (high resolution timers)

AVID Power Flectronics Design Office, www.avid.system.com

loland D'AUTHIER, R&D Ing.

Au dessus de la fréquence de résonance Cr Lr (Région 1) ONE DESIGNES

Pas de ZCS au turn-off au primaire pactif et réactif à couper)

Pas de ZCS au turn-off au secondair

ID 10 Roland DAUTHIER, R&D Ing.

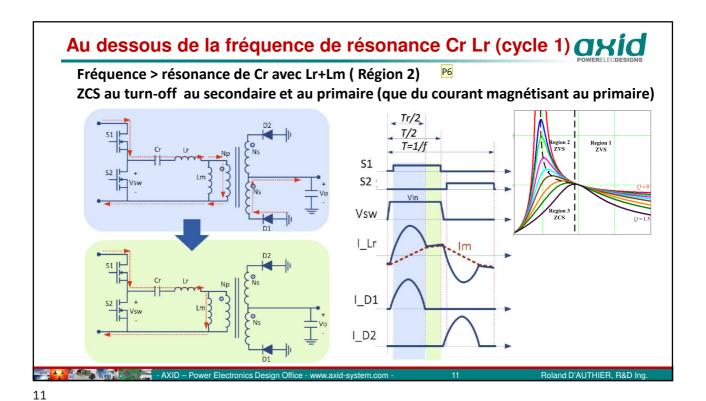
Diapositive 9

P2 PCAxid; 01/10/2019

P5 recouvrement de diode est fct du di/dt au moment du passage a 0 et de si la diode est sic ou non, toutefois c'est bien du ZCS PCAxid; 01/10/2019

P3 au secondaire (diodes)

PCAxid; 01/10/2019


Diapositive 10

P1 au secondaire (diiodes)

PCAxid; 01/10/2019

P4 il peut y avoir du ZCS si on est en light laod

PCAxid; 01/10/2019

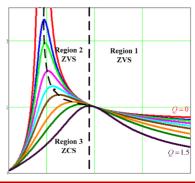
Au dessous de la fréquence de résonance Cr Lr (cycle 2) ONERCLECDESIGNS

TIT/2

Diapositive 11

P6 graphique avec les 3 zones? pour plus de clareté PCAxid; 01/10/2019

Région 3 : Zone capacitive interdite


Apparition de hard-switching

la diode-body conduit avant que l'autre transistor se ferme

- -> très forts di/dt au primaire
- -> très forts dv/dt au primaire

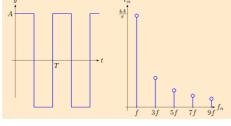
Charge de recouvrement inverse Qrr Temps de commutation de la diode

-> casse rapide possible

- AXID – Power Electronics Design Office - www.axid-system.com

13

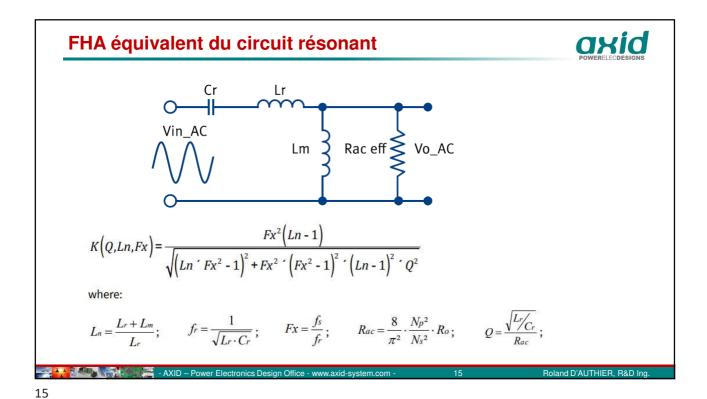
Roland D'AUTHIER, R&D Ing


13

FHA = First Harmonic Approximation

- On a un banc résonant LC
- -> la fréquence joue un rôle important sur le gain
 - -> il faut faire des simulations fréquentielles (Bode avec LTerice par exemple)
- Les logiciels de simulation en fréquence et les mathématiciens ont besoin de sinusoïdes et pas de créneaux
- -> on ne va garder que la première harmonique de courant :

$$y(t) = \frac{4A}{\pi} \left[\sin(2\pi f t) + \frac{1}{3} \sin(2\pi (3f)t) + \frac{1}{5} \sin(2\pi (5f)t) + \frac{1}{7} \sin(2\pi (7f)t) + \dots \right]$$

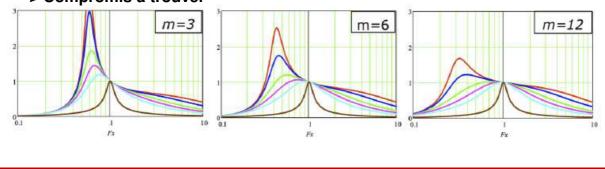

- AXID – Power Electronics Design Office - www.axid-system.com

14

Roland D'AUTHIER, R&D Ing.

P7 google dit que Niquist: "Le diagramme de Nyquist est un graphe utilisé en électronique et en automatique pour évaluer la stabilité d'un système en boucle fermée. Il représente, dans le plan complexe, la réponse harmonique du système en boucle ouverte correspondante."

PCAxid; 01/10/2019


axid Ration Lm/Lr = m = KI = 6Pas très sympa comme courbe de gain ! • En plus il dépend de la charge C'est le prix à payer pour avoir un bon rendement Light load m=6 K(.2, m, Fx)Capacitive region K(.3, m, Fx) $K(.5, m, Fx)^2$ Inductive region ZVS K(.7, m, Fx)Heavy load High Q value K(1, m, Fx)K(5, m, Fx)0.1 Fx 16

Comment choisir mon m = Lm/Lr

- Le convertisseur « surtentionne » plus si Lm est proche de Lr
- Par contre si Lm/Lr est petit :
 - On a un courant magnétisant important car Lm est petit
 - Ce courant ne sert pas au transfert de puissance
 - Forte pente en fonction de la fréquence -> attention à la résolution du générateur de fréquence de switching (PulseFreqModulation)

-> Compromis à trouver

7

- AXID - Power Electronics Design Office - www.axid-system.com -

Roland D'AUTHIER, R&D In

17

Exemple de design / Cahier des charges

	a	bl	le .	1	D	esi)	gn	pa	ara	am	ıe	ter	S
--	---	----	------	---	---	------	----	----	-----	----	----	-----	---

Description	Minimum	Nominal	Maximum
Input voltage	350 V _{DC}	380 V _{DC}	410 V _{DC}
Output voltage	11.9 V _{DC}	12.0 V _{DC}	12.1 V _{DC}
Output power			600 W
Efficiency at 50% P _{max}	97.5% *		
Switching frequency	90 kHz	150 kHz	250 kHz
Dynamic output voltage regulation (0-90% Load step)			Max. overshoot = 0.1 V Max. undershoot = 0.3 V
V _{out_ripple}			150 mV _{pk-pk}

- AXID – Power Electronics Design Office - www.axid-system.com -

Roland D'AUTHIER, R&D Ing.

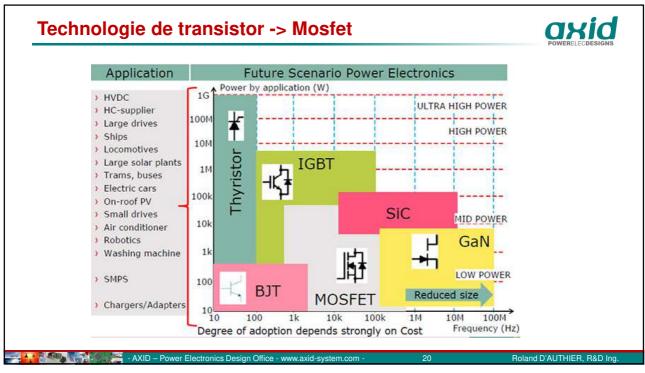
Gain du convertisseur

Main transformer turn ratio

$$n = \frac{N_p}{N_s} = \frac{V_{in_nom}}{2 \cdot V_{out_nom}} \approx 16$$

Minimum required gain

$$K \min(Q, m, F_x) = \frac{n \cdot V_{o_min}}{V_{in_max}/2} \approx 0.95$$


Maximum required gain

$$K \max(Q, m, F_x) = \frac{m \cdot V_{o_\max}}{V_{in_\min}/2} \approx 1.08$$

- AXID – Power Electronics Design Office - www.axid-system.com

Roland D'AUTHIER, R&D Ing

19

Choix des transistors au primaire

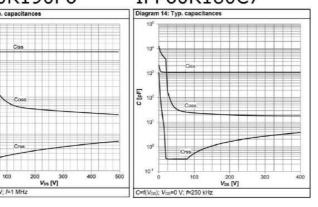
Parameter		IPP65R190CFD	IPP60R190P6	IPP60R180C7
Effective output capacitance, time related	C _{o(tr)}	336 pF	264 pF	349 pF
Gate to drain charge	Q_{gd}	37	13 nC	8 nC
Internal gate resistance	R _g	1.0 Ω	3.4 Ω	0.85 Ω
Reverse recovery charge	Qrr	0.5 μC	4 μC	2.6 μC
Maximum diode commutation speed	di _f /dt	900 A/μs	500 A/μs	350 A/μs

- AXID – Power Electronics Design Office - www.axid-system.com

Boland D'AUTHIER, R&D Inc

21

ZVS - Coss, le petit nom d'une des capas parasites

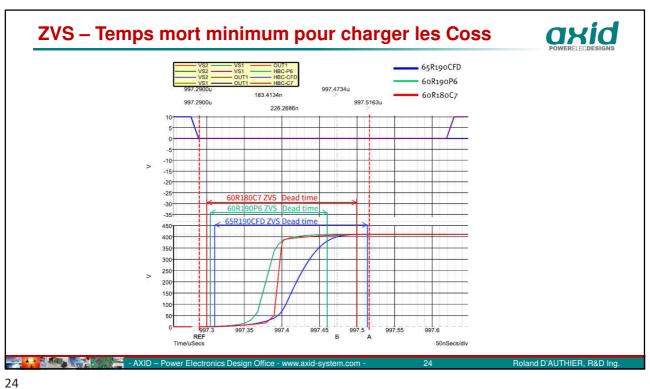


Non seulement on a des parasites mais en plus ils sont non-linéaires
 le Coss dépend de la tension aux bornes du transistor

IPP65R190CFD

IPP60R190P6

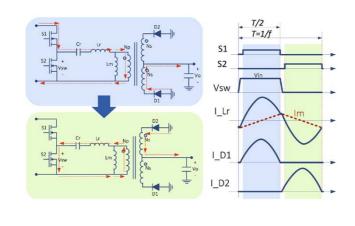
IPP60R180C7



- AXID – Power Electronics Design Office - www.axid-system.com -

E 102

Poland D'ALITHIED D&D Inc


axid **ZVS - Coss parasite – on s'en sert pour le ZVS** Charge « automatique » pendant le temps mort Il faut que le courant soit en zone inductive Le temps mort doit être assez long pour permettre cette charge avec le courant au moment du swicthing Uin D_2

ZVS – valeur de self magnétisante

- Il faut du courant inductif pour charger les capas Coss
- Ce courant est le courant circulant dans la self magnétisante

- AXID – Power Electronics Design Office - www.axid-system.com

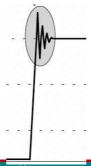
Roland D'AUTHIER, R&D Ing.

25

ZVS - Calcul self magnétisante « maximum »

- + la self magnétisante est petite, plus on a de courant magnétisant
 - · Ça facilite le ZVS
 - · Ça augmente les pertes
 - · moins de ZCS au Turn off primaire
 - Plus de pertes de conduction en rdson * i2
- Le Coss est non linéaire, les constructeurs fournissent des Capacité équivalentes, par exemple Co(tr) pour « Time Related »
- Td typique 100 à 200nS
- Lm max = 180uH

$$L_m = \frac{T_S \times t_d}{16C_{o(tr)}}$$


26

Roland D'AUTHIER, R&D Ing.

ZVS – Un bon point pour la CEM

- La tension du point chaud étant contrôlée par les charges de condensateur Coss
 - · -> « pas de violence »
 - · Les fronts sont plus doux et moins pentus qu'en hard switching
 - · Peu de fuite capacitive entre plan stable et points chaud
- Peu de surtension aux bornes du transistor opposé
- Peu d'oscillation HF

- AXID – Power Electronics Desigr

AXID - Power Electronics Design Office - www.axid-system.com -

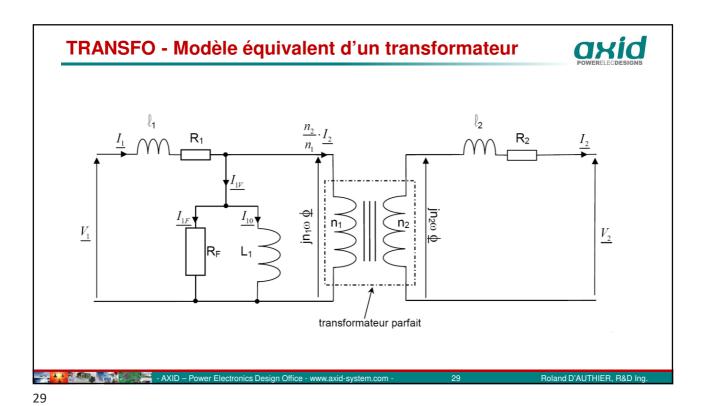
27

Poland D'ALITHIED D&D Inc

27

TRANSFO – Plusieurs technologies de transformateur

- Self de résonance intégrée au transformateur
- Self de résonance externe et transformateur « parfait »
- Bobinage « standard » ou Planar
- PCB ou couches de cuivre ou ruban ou Fils de litz en HF
- Remarque: attention au modèle équivalent utilisé lorsque l'on intègre la self dans le transformateur notamment avec la technologie planar qui réparti la fuite au primaire et au secondaire



- AXID – Power Electronics Design Office - www.axid-system.com

28

Roland D'AUTHIER, R&D Ing.

TRANSFO – intégration de la self de fuite

- On ajoute un entrefer dans le transformateur
- Ou
- On ajoute un corps magnétique sans secondaire pour profiter du câblage du primaire

TRANSFO – Design par le bobineur?

- Pas simple d'accéder aux données de certains fabricants de corps magnétiques
- Le design doit être adapté aux capacités techniques du bobineur

- AXID – Power Electronics Design

31

Roland D'AUTHIER, R&D Ind

31

TRANSFO - Les données d'entrée

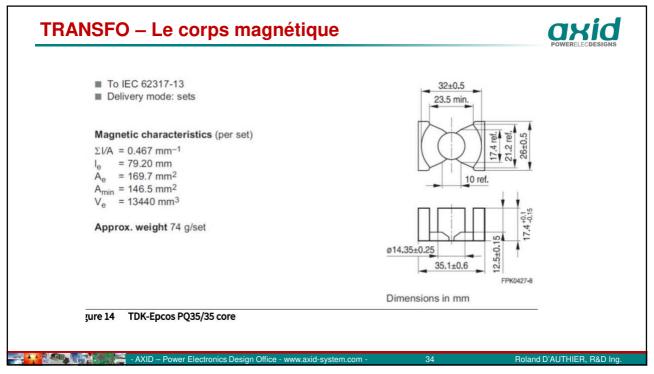
- On souhaite un rendement global > 97%
 - Le transformateur « perd » en général entre 0,5 et 1% si le design est correct
- Dans l'exemple:
 - 0,5% * 600W = 3W
- Premier critère : il faut trouver un corps magnétique capable de dissiper 3W
 - Moins de 110°C avec un ambiant à 55°C:

$$\Delta T_{trafo_MAX} = \left(110 - 55\right)^{\circ} C = 55^{\circ} C$$

$$Rth_{trafo_{max}} = \frac{\Delta T_{trafo_{Max}}}{P_{trafo_{Max}}} = \frac{55^{\circ}}{3} C / W = 18.3^{\circ} C / W$$

- AXID – Power Electronics Design Office - www.axid-system.com -

32


Roland D'AUTHIER, R&D Ing.

TRANSFO - Les données d'entrée

- La fréquence de résonance est fixée à 115kHz (exemple)
- Grâce aux simulations
 - · formes de tensions et courant
 - au bureau d'étude du bobineur ou si on a le courage on déroule la procédure suivante
- Remarque: la bande de fréquence vérifiée lors des tests CEM démarre souvent à 150kHz...

33

TRANSFO – Choix du matériau magnétique

■ 3C90 -> pas cher

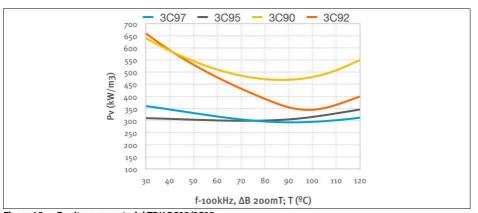


Figure 15 Ferrite core material TDK PC95/3C95

Delegal DIALITHED, DOD Inc.

35

TRANSFO – Core PQ3535 (35mm x 35mm)

Core physical parameters Ferroxcube PQ3535 (vendors vary slightly in specified parameters):

$$Ae = 1.9 \cdot 10^{-4}$$
; $l_m = 0.088$; $Ve = 1.63 \cdot 10^{-5}$; $A_n = 1.52 \cdot 10^{-4}$; $MLT = 0.075$ (10)

- Ae = Aire en m² -> 190 mm²
- Ve = volume en m3
- MLT = Medium Length Turn en m -> 75 mm

36

Roland D'AUTHIER, R&D Ing.

TRANSFO - Calcul du nombre de tours minimum

- La densité de Flux B est
 - · Proportionnelle à la tension
 - Inversement proportionnelle au nombre de tours
 - -> Plus il y a de tours, moins on sature le transfo
 - · -> Plus la tension est élevée plus on sature le transfo
- Objectif = limiter la densité de flux
 - n'=15= rapport de transfo

$$V_p = n' (V_o + V_f) = 15' (12 + 0.2) = 183V$$

 $N_{P_-min} = \frac{n' (V_o + V_f)}{2 \times fmin \times Ae \times DB} = 23.265$

- -> 30 tours au primaire
- -> 2 tours au sesondaire

$$DB = \frac{1}{N_p \times Ae} \times \left(V_o \times n \times \frac{0.5}{fr}\right) = 0.138T$$

AXID - Power Electronics Design Office - www.axid-system.com

37

Roland D'AUTHIER, R&D In

37

TRANSFO - pertes « fer »

- Dans le corps magnétique ça « bouge » à la fréquence de switching
- Ces fluctuations de champ génèrent des pertes qui dépendent de la fréquence et de la densité de champ

$$P_{core} = a \times \left(\frac{fr}{10^3}\right)^c \times \left(\frac{DB \times 10}{2}\right)^d \times Ve \times \frac{10^{-3}}{10^{-6}} = 0.513W$$

- AXID – Power Electronics Design Office - www.axid-system.com

38

Roland D'AUTHIER, R&D Ing.

TRANSFO – Pertes cuivre

- Longueur de fil au primaire et au secondaire
- MLT = moyenne d'un tour:

$$l_{wire.pri} = MLT ' N_P = 2.25$$

$$l_{wire.sec} = MLT ' N_S = 0.15$$

Aire de bobinage

$$A_{n_{-}p} = A_n \cdot \frac{k}{2} = 7.6 \cdot 10^{-6}$$

$$A_{n_{-}s} = A_n \cdot \frac{k}{2 \cdot N_{spc}} = 3.8 \cdot 10^{-6}$$

- AXID – Power Electronics Design Office - www.axid-system.com

Roland D'AUTHIER, R&D Ing

39

TRANSFO - Pertes cuivre

Section du câble

$$A_{wire.pri} = \frac{A_{n_p}}{N_p} = 2.533 \cdot 10^{-7}$$

$$A_{wire.sec} = \frac{A_{n_{-}s}}{N_{s}} = 1.9 \cdot 10^{-6}$$

Résistance des câbles

$$R_{dc_pri} = \frac{r \times l_{wire.pri}}{A_{wire.pri}} = 0.153$$

$$R_{dc_sec} = \frac{r \times l_{wire.sec}}{A_{wire.pri}} = 1.361 \times 10^{-3}$$

- AXID – Power Electronics Design Office - www.axid-system.com

40

Roland D'AUTHIER, R&D Ing.

TRANSFO - Pertes cuivre

• Pertes en ri²

$$Sec_{Loss} = I_{Sec}^{2} R_{dc_sec} = 3.4W$$

- AXID – Power Electronics Design Office - www.axid-system.com -

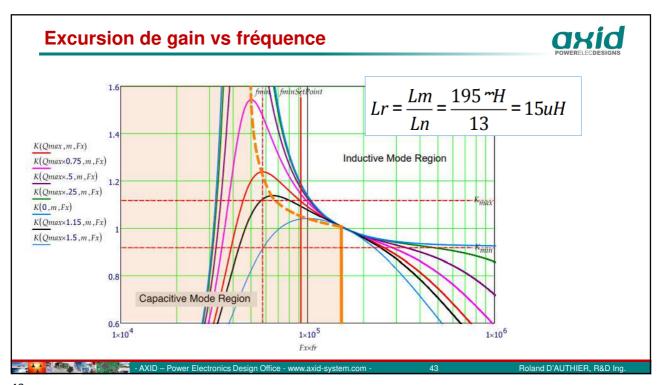
41

Roland D'AUTHIER, R&D Inc

41

TRANSFO – Pertes totales

On arrive à estimer les pertes totales


$$Total_{Loss_Est} = Pcore + Pri_{Loss} + Sec_{Loss} = 6.617W$$

- Environ 1% dans le transformateur avec un matériau magnétique peu cher
- Ces pertes sont environ divisées par 2 avec un matériau magnétique (3C95) plus performant et une surface de câblage plus grande

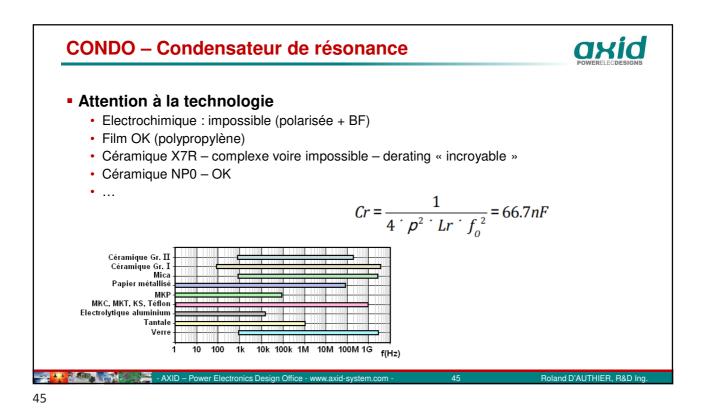
AVID Power Flectronics Decign Office, MANN avid system com-

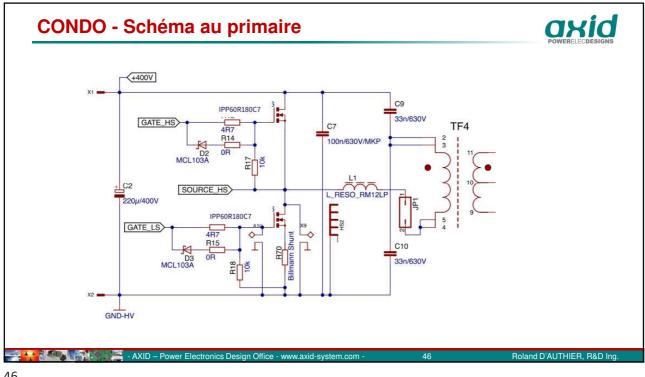
42

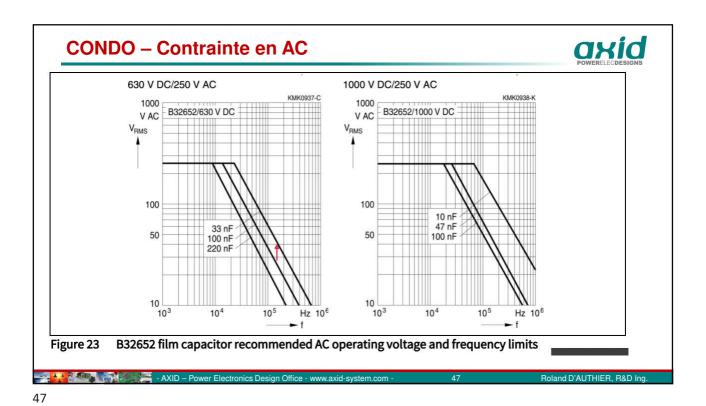
Roland D'AUTHIER, R&D Ing

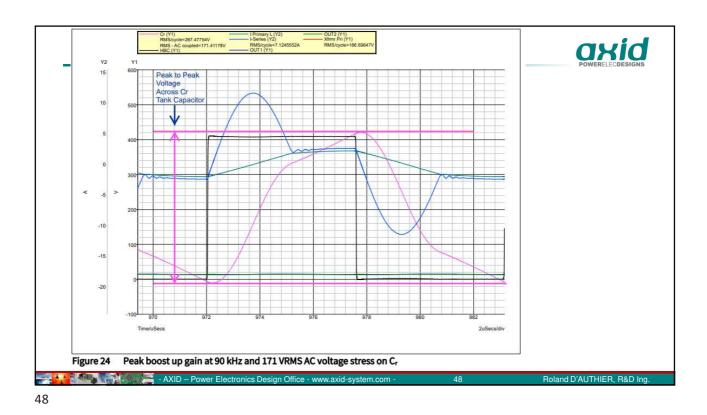
43

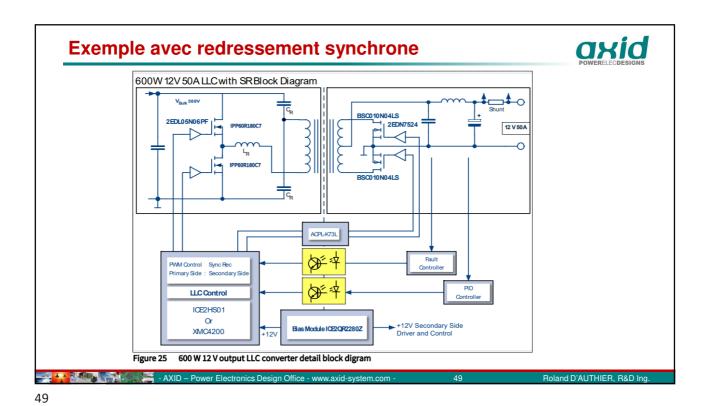
Le ratio Lm/Lr = KI = m = ...

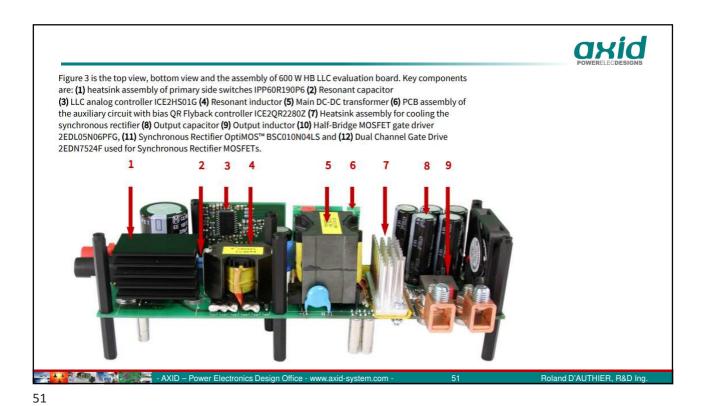


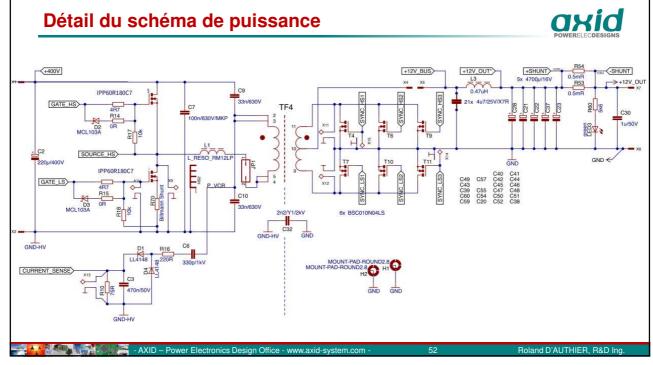

- Dans cet exemple nous avons une ration de 13
 - Peu d'excursion de gain demandée
- On trouve souvent des ratios KI de l'ordre de 5
 - · Permet de plus « surtensionner »

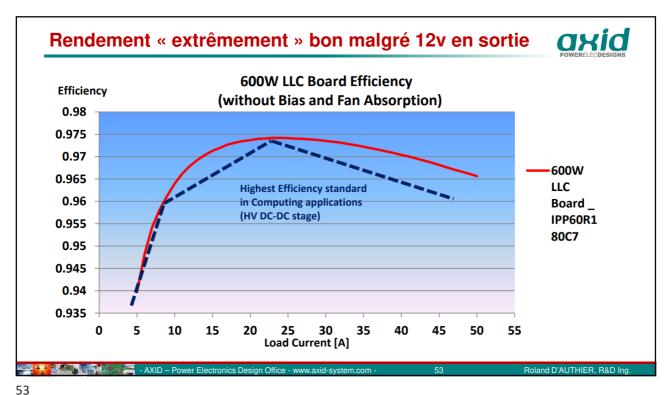

$$Lr = \frac{Lm}{Ln} = \frac{195 \, ^nH}{13} = 15uH$$

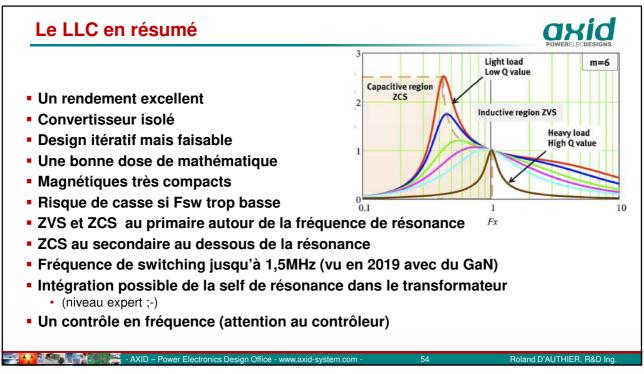

44

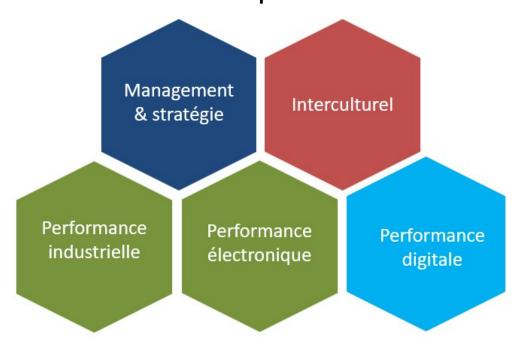

Roland D'AUTHIER, R&D Ing.








Synchronous rectifier (8) Output capacitor (9) Output inductor (10) Half-Bridge MOSFET gate driver 2EDL05N06PFG, (11) Synchronous Rectifier OptiMOS™ BSC010N04LS and (12) Dual Channel Gate Drive 2EDN7524F used for Synchronous Rectifier MOSFETs.



-

Une offre de formations adaptée à vos situations professionnelles

Contacts

Tél. 04 91 95 55 70 Mail : contact@framatech.fr

Alain BARONI, CEO alain.baroni@framatech.fr

Sheina GUEDJ, Formations sheina.guedj@framatech.fr

FRAMATECH S.A. au capital de 38112 Euros Etudes & mises en œuvre de stratégies industrielles internationales Hautes Technologies

4 boulevard d'Arras - 13004 Marseille - France
Tél. +33 491 95 55 70 / Fax. +33 491 95 55 75 / Mail : contact@framatech.fr
Organisme de formation n° 93060115506 – Siret 344 351 879 00046 – NAF 742C – RC88B126
Web : www.framatech.fr